Last Updated on
May 20, 2022
By
Excedr
RNases (or ribonucleases) are a class of hydrolytic enzymes that catalyzes both the in vivo and in vitro degradation of ribonucleic acid (RNA) molecules into smaller components. The nuclease operates at the level of transcription and translation and breaks down the RNA by cleaving the phosphorus-oxygen bonds.
RNase enzymes are categorized into two groups:
Examples of single proteins are RNase III, RNase A, RNase T1, RNase T2, and RNase H. There are also complexes of the ribonuclease protein and RNA, including RNase P and the RNA-induced silencing complex.
Among all of these RNases, RNase A (or ribonuclease A) is the most commonly studied. It was first isolated from the pancreata of cattle and is also the first enzyme in which a complete amino acid sequence was determined.
The bovine pancreatic ribonuclease (or Ribonuclease A) is also known as a digestive enzyme. It specifically “digests” or hydrolyzes RNA polymers by endonuclease cleavage of the phosphodiester bonds. It leads to the formation of covalent links between adjacent ribonucleotide residues in RNA molecules.
RNase is involved in the regulation of many catalytic functions of the body. Its normal function is in vivo enzymatic RNA degradation into smaller oligonucleotides.
RNase is ubiquitous. It’s found almost everywhere in every organism. But, for most studies, they are isolated from different mammalian tissues, such as the brain, liver, pancreas, skin cells, eosinophil, and several other somatic cells.
All three types of RNA—mRNA, tRNA, and rRNA—play a major role in gene expression and protein synthesis. Some other RNAs like siRNA and miRNA also have roles in regulating gene expression.
Sometimes, some RNAs are left unused. In these cases, the RNase enzyme causes the catalysis and degradation of the unused RNAs and clears the cell.
Different RNases are involved in various functions in organisms. Functions range from clearing unused and unprocessed cellular RNA, to affecting biological processes such as self-incompatibility, plant flowering, and angiogenesis.
Some of the RNase functions based on their types are given below:
The lack of RNases or any mutations in the protein subunits of the enzyme prevents our bodies from responding to the above-mentioned metabolic functions and causes several syndromes and genetic disorders. For example, mutations in any subunit of human RNase H2 cause Aicardi-Goutières syndrome (AGS), an autosomal recessive genetic disorder.
RNase has been isolated and biochemically characterized from many organisms, including parasites, bacteria, fungi, plants, and a variety of tissues from mammals. In E.coli, nine ribonucleases have been found, including RNase G, RNase E, RNase III, RNase I, and RNase P.
Typically, all RNase works by breaking the bonds between nucleotides, making nucleic acids shorter and more accessible to other enzymes. However, all of them are structurally different, facilitating metabolic function using different metabolic pathways. Below, we’ve covered the working mechanism of the most commonly studied RNase among the rest-ribonuclease A.
Don’t have the budget to purchase lab equipment outright? Consider leasing through Excedr to save your lab time and money. Browse your leasing options today!
RNA is the most common contamination in labs during DNA extraction and is very difficult to remove. But, the use of commercially available ribonuclease A makes it easier to cleave RNA contaminants and purify the DNA samples. It disrupts the phosphodiester bond between the adjacent nucleotides of RNA and facilitates the cleavage process.
RNase is an essential substrate in reaction mixtures including other reagents like polymerases, SDS, and tris buffers. The DNase and protease-free RNase solutions are used in several in vitro assays of molecular biology and biochem labs, including in vitro transcription and RT-PCR.
Some of the other main applications of RNases in labs are given below:
However, RNase may not be useful in every lab application. In RNA extraction procedures, for example, RNases are a huge problem. In this process, DNases are used to remove DNA, but complete elimination of RNase is difficult. For this purpose, RNA inhibitors are used to stop the catalytic activity of the ribonuclease.
RNase inhibitors are larger, acidic, and leucine amino acid-rich recombinant enzymes that form a tight complex with RNases for their inhibition in the given samples.
RNase or ribonucleases are a group of enzymes that are involved in the degradation of RNA molecules. They are ubiquitous and are isolated and studied from different cells of different organisms. The variant types of RNases perform several metabolic functions in the body, including cleaning up unused RNA and angiogenesis.
These enzymes are used in labs for DNA extraction, plasmid purification, and many other workflows. It is precisely why high-quality and lab-grade RNases are necessary to get excellent end products. Besides these reagents, high-tech equipment is necessary to ensure the accuracy, precision, and reliability of obtained results.
To solve this major concern and facilitate your workflows, Excedr helps labs obtain cutting-edge equipment through a flexible lease program. At Excedr, we strive to help scientists and researchers procure equipment that fits their unique lab needs without the enormous upfront costs typical of purchasing.
Interested in learning more about how Excedr can help your lab obtain its high-quality R&D needs while saving money for more business-critical operations? Talk to us to discover more!